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A technique is proposed for determining the rheological constants based on the analysis o f  the spreading 
of  tall cylindrical samples under the gravitational force. 

The spreading of  non-Newtonian  liquids under the gravitational force is usually considered in the approximation 
of the theory of lubrication when the thickness of  the liquid layer is much less than its diameter  [1, 2]. In the present 
paper the analysis of  spreading is given for high cylindrical samples Ho/D o ~ 1, where H o is the initial height of  the 
sample, and D o is its initial diameter  (Fig. 1). It is suggested that the rheology of a liquid is described by the relationship 

I .  T0 J �9 (1) Tij == (12/2)1/2 .-}- If (IJ2) ~n-I)/2 "Tii, 

where rij is the tensor of  the shear stresses; r o is the critical shear stress; 12 - -  42/pq'~pq is a second invariant of the tensor 
of velocities of  deformat ion for an incompressible liquid; K and n are parameters  of  the medium characterizing its 
viscous properties; and ~/ij is the tensor of  velocities of  deformation.  

The process of  spreading of  a liquid cylindrical sample on a horizontal surface is determined by the following 
dimensional parameters: 

P, g, K, tz, To, /-/o, Do, c~0, t. (2) 

Here p is the liquid density; g is the acceleration of gravity; a o is the coefficient  of  the surface tension of the liquid; t 
is the time. In [3] it is shown that the ratio of  the force of  surface tension to the gravitational force is determined by the 
value of the dimensionless complex c~ol/pgVo, where l is the perimeter  of  the surface layer of  the liquid and V o is the 
volume of the sample. For samples with diameter  D o _> 1 cm and not too high levels of  spreading H / H  o _> 0.1 (Fig. 1) an 
estimate gives that the gravitational force is much greater than the force of  surface tension, and the value of the given 
dimensionless complex is small. Therefore,  below we will ignore the effect  of  forces of  surface tension on the process 
of spreading. In this approximation the parameter  % is not among the determining parameters.  

We restrict ourselves to the case of  slow flows when the equations of  creeping flow are valid. Then the density 
does not have to be among the determining parameters itself [4], but only in the combination pg. There remain seven 
dimensional parameters determining the process of  spreading: 

Pg, K, n, z 0, Ho, Do, t. (3) 

The dimensions of  these parameters  are as follows: [pg], kg/(m.sec)2; [to] , kg/(m.sec2); [K], kg/(m.sec~-n); [Ho] = [Do] , m; 
[t], sec; n is a dimensionless parameter.  

In order to determine corresponding'dimensionless complexes, we construct the dimensional matrix [5], taking 
into account that two dimensionless complexes are evident right away: II 1 -- n and II~ = Ho/Do: 

[9g1 [KI [%] [Ho] [tl 

kg 1 I 1 0 0 

- -2  - -1  - -1  1 0 m 

soc - - 2  (n--2) - - 2  0 1 

(4) 

Elements of  the dimensional matrix are exponents, in which the dimensional units enter into parameters (3). The 
rank of the dimensional matrix in the given case is equal to three, since the determinant  of  the third rank compiled, for 
example, f rom the third, fourth,  and f if th columns is nonzero. 
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Fig. 1 Fig. 2 

Fig. 1. Spreading of  a block of a viscous liquid with K = 300 kPa-sec~ 
n - 0.46; D O = 0.02 m; Ho/D o = 0.5. Le f t -hand  side, a f in i te-e lement  
network, r ight-hand side, distribution of the effect ive viscosity [1) 8 
kPa.sec~ 2) 5; 3) 4; 4) 3.6; 5) 3 kPa-sec~ 

Fig. 2. Dependence of #o on the number  n (Ho/D o = 0.7). 

Any dimensionless complex characterizing the process can be written as 

17 = (gg)q'K ~2 "roq3no''4 t~,. . (5) 

Taking account of  (4) we obtain the system of  equations for  determining the unknown exponents: 

ql + q2 = 0; 

- -  2 q l  - -  q.~ - -  % + q~ = 0; ( 6 )  

- -  2ql + (n - -  2) q,2 - -  2q8 q- q~ = 0. 

By using (5) and (6) we obtain four independent dimensionless complexes which determine completely the process of 
spreading: 

Ho "co [' ggHo~ ~/n (7) 
n, - - ,  - t I K ) - - - -  = t 6 ,  

Do 9gHo ' 

where ts is a dimensionless time. All the remaining possible dimensionless complexes are functions of  complexes (7). 
Any dimensionless quantity characterizing the process can be written as a function of complex (7). As such a 
characteristic we can take the dimensionless height of  the spreading sample: 

[ Ho % , / 9 g H o ,  Z/n i (8) H _ f ~  n , - - ,  - -  t 
Ho Do  g-o' [-7C) 

or the dimensionless ratio of  the current height to the current diameter  (see Fig. 1): 

[ H  0 To (~]l/n] (9)  H _ [ , ,  n, , ~ ,  t 
D ~ 9grip 

Now we analyze Eqs. (8) and (9) in order to create a technique for  determining spreading rheological constants. 
We consider some particular cases. 

N e w t o n i a n  L i q u i d  (r o -- 0, n = 1). From (8) we obtain 

Ho - -  [1 , t6 , 

where t e = tpgHo/#; # is the viscosity of  the Newtonian liquid. We introduce the velocity of  spreading v, defining it as 
the derivative of  the instantaneous height with respect to time. Then f rom (10) we find 

( l l )  
aN pgH o 

v ~ - -  --  W (Ho/Do, t~), 
dt 

where 
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Of 1 
1F (HdD0, t~) = Ot~ - " 

For the maximal velocity of spreading (for t = 0) from (11) we obtain 

9 g H2o To ( Ho/ Oo) 
~/2q a x  ~ 

where ~o(Ho/Do) = ~(Ho/D o, 0) is the value of the function �9 at the initial time. By knowing the numerical value of 
the function ~o(Ho/Do) and measuring in the experiment the velocity of spreading Vraax, we determine the viscosity of 
the liquid from the results of the experiments 

9gH~Fo ( Ho/ Do) (l 2) 
i x=  

~Tmax 

The value of the function 9o(Ho/Do) is not determined by the method of dimensional analysis and can be obtained only 
from a numerical solution of the problem. 

Liquid with a Power Rheological Law (% = 0). Equations (8) and (9) give 

tt/H~ = /~  in, Ho/Do, t(.ogHo/K)~/"], 

H / D =  f= [n, Ho/Do, t(pgHo/R)~/"l. 

(13) 

By differentiating the first of Eqs. (13) with respect to time, we obtain for the maximal spreading velocity 

dH ~r 1/,* ) 7 - , = 0   ,TJ -0 *0 
04) 

where 

lFo (n, /-/o/Do) ~ 0t~ ~=0 

From (14) we can express the coefficient of composition of the liquid: 

K = 9g'H~+lW~ [n, Ho/Do] (t5) 
n 

Z)rnax 

If the function ~o[n, Ho/Do] is known, then with the help of (15) we can determine the coefficient of 
composition of the power liquid from the results of the spreading experiments. In this case it is necessary to know the 
second rheological parameter, the coefficient of nonlinearity of the liquid n. An expression for determining n can be 
obtained by using the methods of dimensional analysis and similarity theory. 

We analyze the spreading of the two similar samples (HoffD01 = Ho2/Do2) from one liquid with differ,rot initial 
heights Hol ~ Ho2. Then from (13) it follows that 

(HID) , -  f,  in, Ho~/Do,, t(pgHojK)*/'q, 

(H/D)~ -- f ,  [n, Ho2/Do2, t (pgHodK)*/'q. 

If we compare these samples for the same level of spreading (H/D) 1 = (H/D) 2 then, due to similarity of the sa~lples, the 
values of the third dimensionless complexes on the right-hand sides should be the same: 

tl (9gHoJK)' /" = t2 (pgHo2/K) I /~- (I 6) 

Here t 1 and t 2 are the typical times of spreading of the first and second sample to the same level of spreading; this level 
can be specified arbitrary. From (16) we express the coefficient of nonlinearity of the liquid 

lz = In (Ho,, Ho~)/,n (t~/t~). (17) 

By measuring in the experiment the times t I and t 2 and knowing the initial heights of the similar samples, we 
can determine the coefficient of nonlinearity of the liquid. It is shown in [6] that by using the methods of similarity 
theory we can obtain analytic expressions for determining the relative viscosity of a non-Newtonian suspension from 
the results of spreading experiments. However, for determining the second rheological parameter K it is insufficient to 
use only methods of similarity theory and dimensional analysis. It is required to also use results of the numerical 
calculation of the process of spreading for high samples under the gravitational force [7]. 
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Fig. 3. Calculated dependences of the ratio H / D  on the 
dimensionless time t e for  different  n (Ho/D o = 0.7). 

Mathematically this problem falls into the class of problems for differential equations with the so-called "free 
boundaries" (in our case, free surface). The shape of this boundary is unknown and is the desired quantity. This 
condition is responsible for the nonlinearity of  the problem since the unknown boundary or its part is determined from 
the unknown solution. The linearization is usually achieved by the introduction of  an iteration procedure on 
determining the shape and the location of the boundary, starting from a certain known, initial position in the space. At 
each iteration or time interval it is required to solve the problem determining the components of  the vector of  velocity 
and pressure, i.e., the corresponding unknowns in the Navier-Stokes equations. If  we consider the spreading e f  high- 
viscosity liquids, then we can ignore the convective derivative with respect to the velocity in the equations of motion. 
For solving a physically nonlinear problem, i.e., when the liquid under investigation is non-Newtonian,  it is n,~'cessary 
to iterate on this nonlinearity at each time interval. After the velocity field has been determined, the front  of the free 
surface is moved according to the velocity found and the kinematic conditions. 

The above algorithm has been realized on the basis of the f ini te-element method with the use of  the variational 
principle. The position of the cylinder is known initially. Its longitudinal cross section is covered by a network (ff finite 
triangular elements, the coordinates of which are known. The functional is minimized numerically and the nodal 
velocity components are determined. A certain time interval is specified, and new coordinates of the ncdes are 
determined on this interval. Then the velocity field is determined again and so on, up to the desired value:; of the 
spreading time. At each time interval there is a possibility for determining different  characteristics of lowering: pressure 
distribution, intensity of velocities of deformation, viscosity in the entire volume of the sample. In Fig. 1, a certain 
moment of the process of spreading, the shape of the finite element network, and the distribution of the e ' fect ive 
viscosity are given. 

In Fig. 2, results of the calculation of the dimensionless function go[n, H0/Do] are given for different  values 
of the coefficient of nonlinearity of the liquid. All calculations were conducted for the ratio H0/D o = 0.7. In tZaat case 
the experiment provided for sufficient stability of the sample. 

After determining the coefficient of nonlinearity n in the experiment,  we can determine the second rhe~logical 
parameter, the coefficient  of composition K, from Eq. (16). In order to do this, it is necessary to measure the rmximal 
velocity of spreading Vma x in the experiment. The viscosity of the Newtonian liquid (n = 1) can be determined from Eq. 
(12). 

The coefficient  of composition can also be found in another way. We express formally the coef fk ien t  of 
composition from the definition of the dimensionless time (7): 

K = 9gHo (t/ts) n. (l 8) 

Here, the values of  the ordinary time t and the dimensionless time t o are taken for one level of  spreading (i.e., value of 
H/D). The value of  t is determined from the experiment (we can make use of results of experiments for dete~ mining 
n), and t o is found from the calculated data. In Fig. 3, the results of numerical calculations are given for the dependence 
of the ratio H / D  on the dimensionless time for different  values of the coefficient of nonlinearity of  the liquid (Ho/D 0 
= 0.7). From the given nomogram we can readily determine the value of the dimensionless time for any H / D  < Ho/D o. 

NOTATION 

H o, D o, initial height and diameter of  the sample; H, D, instantaneous height and diameter of  the sample; TU, L/ij, tensors 
of shear stresses and velocities of deformations; 12, the second invariant of the tensor of velocities of deformations; r0, 
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K, n, rheological constants; p, density; g, acceleration of gravity; %, coefficient  of surface tension; t, t 6, di~aensional 
and dimensionless times; IIi, dimensionless complexes; v, Vmax, velocity of  lowering, maximal velocity of lowering; ~, 
qo, dimensionless functions. 
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EFFECTIVE VISCOPLASTICITY PARAMETERS OF SUSPENSIONS 

V. A. Buryachenko UDC 539.,1:541.24 

The effective field method is used to determine effective parameters of  suspensions consisting of  rigid 
ellipsoidal inclusions in a nonlinear viscoplastic matrix. 

1. General Relationships. Within a macroregion z with characteristic function Z we will consider a suslgension 
containing a statistically large number of rigid ellipsoidal inclusions and an incompressible viscoplastic mat;ix, the 
mechanical properties of  which are described by a dissipative function 

(1) 
D = k V ~ +  1 y n (~z)(sijeij) + ae~jeij. 

For definiteness, we will consider the variant of a power-law liquid r~(tke ) = r;o(I2")( n - 1)/2, where 12" = ~ kg 9ke 
is the second invariant of  the deformation rate deviator ~ kg = ekg - -  t i i / 3 ,  ~i i  = 0 from the incompressibility cordition. 

The matrix contains a Poisson set X = (V k, x k, a i, Wk) of ellipsoidal rigid inclusions v k with characteristic 
functions V k, centers x k forming a Poisson set, semiaxes a i (a 1 > a 2 > a 3) and set of  Euler angles w k with the inclusions 
having identical dimensions but various orientations. We will assume the random fields X, a, e, e ergodic and stati:;tically 
homogeneous, so that averaging over the set can be replaced by averaging over characteristic volumes: 

<(.))==v-~'y( . )Vc~(x)dx,  v ~ = m e s v ~ ,  ~ = 0 ,  I, ..., 

< (.)> = ( r n e s z ) - ~ ( . ) Z ( x ) d x ,  

V o = Z--V, V = ZkVk. In the future we will use the notation (. I xl;x2) for  the conditional average over the set X, where 
at x 1, x 2 we have inclusions with x 1 # xg. 
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